黑洞的形成

黑洞  

一個光亮的恆星為什麼會變成黑洞?答案是恆星衰老了。恆星的成份多為氫氣,也就是讓興登堡號這樣的飛船飄浮不墜的輕質物質。氫就是讓恆星發光的燃料。每個恆星的內部都在進行核融合反應,有點像連續引爆氫彈那樣,將氫氣轉化為能量:光與熱。恆星在「燃燒」氫氣時,必得面對一場拉鋸戰:一方面恆星內部的熱壓力會促使恆星擴張,就像把氣球吹大那樣:另一方面,恆星本身重力的拉扯力又促使恆星縮回來。因此恆星在發熱時,這場拉鋸戰是陷於膠著狀態的,恆星的大小也不會起變化。但一旦核反應停止,恆星就得對重力讓步,因而整個崩潰下來,就像氣球洩了氣一樣。

        不過恆星年紀一大就開始變冷。由於沒有了熱能,這個老邁的龐然大物無法產生足夠的內部壓力以抵抗重力的收縮,因此開始崩潰並縮小。但恆星雖然在縮小,卻沒有損失任何物質;氫仍舊在,只是被極力壓縮而已。這意味著恆星所有的質量都向中心趨進許多,也就是將重力集中於一個小地方。小型的恆星會縮小成所謂的「白矮星」,與地球大小相當,但已停止核融合的恆星。較大的恆星則在一抹耀眼的華光,所謂的「超新星」爆炸中自我毀滅殆盡,原來的質量幾乎被轟得一點不剩。

        但如果恆星的剩餘質量夠大(約達我們的太陽質量的一點四倍)那麼這些僅存的物質可能會變成黑洞。以下圖為例,這個恆星被壓縮到直徑只有一英哩。此時表面上的重力強得連它自己的光都無法逃脫。那個天體還在原地,再也看不到它了。任何接近它的物體都會被吸進去,然後消逝在「黑洞」中。

黑洞和時間的關係
        依照愛因斯坦的相對論,重力會使時間慢下來。因此當我們接近黑洞的時候,由於受到極強的重力效應,時間確實會緩慢下來,甚至有可能在我們接近到黑洞某個範圍內,當經過一秒鐘時,外界已過了100年。

        若把時鐘放在重力微弱的地方(例如地球)是很難(但仍可以辦到)測出重力對時間的影響的。但若把時鐘放在重力強大,如黑洞之處,則立刻可見到重力對時間產生的影響,至於影響之大小又依觀察者位置之不同而有不同。對於掉入黑洞中的太空旅行者而言,重力增大會使他對事物的認知加快;他會覺得他被黑洞吸了進去,一下子就到了「底」。但對位於遠方,不受黑洞影響的觀察者而言,看到的情形與此恰好相反。在他們的眼中,那位不幸的太空人似乎動得很慢,而且好像越接近黑洞,就移動得越緩慢。原因是,根據相對論的預測,黑洞的強大重力會使時間延緩下來,所以那個太空人似乎永遠都還沒掉落到底。在最底下的地方?所有的質量和能量都被濃縮為極小的點?空間消失了,時間也停止了。黑洞內應用於外界的一切物理定律都宣告終止,因此我們無從得知黑洞裡到底是何種光景。

        有一位學家〈史瓦西〉算出一個範圍,再範圍之內的時間和各種物理現象都和外面不同,例如:時間較慢、重力較大。因為是史瓦西算出來的,所以稱為史瓦西半徑界面,又稱事像地平面。

        事像地平面指的是黑洞內時間與外界是完全不同的狀態由於光被重力所牽引,在黑洞裡的時間一分鐘或許等於外界的數十年好比說妳現在被吸入黑洞內,妳在裡面一分鐘後就會被擠縮壓毀可是或許在幾秒後妳看到了有其他人也被吸入黑洞內,但這其實是數十年後被吸入的...

        自從1911年愛因斯坦發表彎曲時空的「廣義相對論」後不久,很多天文物理學者都相信在強大重力作用下會有黑洞的存在。因為一般初步的想法是類似地心引力 (重力)的作用,若在如此強大重力作用下,會不斷地吞噬附近的物質,連在真空中每秒速度高達30萬公里的「光」臨近黑洞時都無法倖免,無法逃脫它強大重力的吸引。況且只有物質被吸入而不會釋放出來,所以它是我們無法目視得到會有任何東西呈現的黑暗「區域」,我們稱為「黑洞」。

      在一般人的心目中,黑洞在宇宙中就好像地球上傳聞已久的神秘百慕達三角地帶。從一些簡短的報導裡,我們知道黑洞在宇宙的時空裡是一個非常小的點,但這一小小的點卻有無窮的吸引力(重力),會不停吞噬它週遭的物質(如塵埃、星體),即使光波也在所難免。一般人相信黑洞可能是由巨型星球演化,經超新星爆發後,接近星體中心的物質劇烈地塌陷而成的。存在宇宙中的數目可能很多,且還有很多奇怪而未經證實的特性,足以影響人類對於整個宇宙和時空的想法。

      近代天文物理學大師史蒂芬‧霍金 (也就是「時間之箭」一書的作者)在1974 年提到「黑洞蒸發」的論點,他強調黑洞所吞噬物質的狀態,是像量子物理所說的呈現出量子化的「激發態」(不穩定狀態),這時會在南北兩極的地方向外噴流出激發態的物質,這就是所謂的「黑洞蒸發」現象。

        直到哈柏太空天文望遠鏡上了太空且發揮功能,藉著它的廣角鏡頭紅外光相機所拍攝的紅外光譜圖案(因為紅外光可穿透各個星球外圍雲氣的障礙)讓我們可直接看到星球的原貌。終於在1997年5月12日,NASA宣佈發現了距離我們5千萬光年外的 M84 星系中心處,有顆約為太陽3億倍質量的黑洞正像放煙火般地噴流出大量物質。接下來,天文學家利用哈柏太空天文望遠鏡和歐洲的紅外光太空望遠鏡,也發現許多黑洞都有像煙火般的噴流景象。

1997年5月12日美國太空總署 (NASA)發佈消息指出,利用哈柏太空望遠鏡上紅外光相機廣角鏡頭的光譜圖影像,發現在M84星系中心處有一個約為太陽3億倍質量的黑洞。這是人類首度發現黑洞的兩極正以每秒400公里的速度向外噴流物質。


四、黑洞和相對論
        在這裡又談到愛因斯坦的相對論。本來黑洞並非一定得由大質量的恒星演變而成, 只是一般星體不可能一下子縮到底。所以恒星演變成黑洞只有經由大質量塌縮這一途徑。此結論已由相對論導出,至於黑洞與外界斷絕關係,我們可以把其形狀試想成細長瓶子狀。進入瓶子的一切短程線,都只能按弧線落到其底部。因此形成禁錮的空間,任何物體都無法逃出。但這個禁錮空間對外界是開放的,只是進的去出不來而已,也就是它和外界相通只有單向性。這個禁錮空間的內外分界稱為「事界」,也就是史瓦西半徑的界面,過了這界線,外界就無從得知了。內部的人最遠只能到達史瓦西半徑界面,亦即事界是他們世界的端點。而史瓦西界面是由史瓦西首先依據相對論所求出的解,後人便稱之為史瓦西黑洞。然而其實事界的概念已先於愛因斯坦早存在,但他創見性的兩點在於時空彎曲以及光速是一切物體運動的極限。

五、黑洞的利用
        物理學家把有序的相反概念,也就是無序狀態叫做熵(Entropy)。 一個封閉的物質世界系統,無論甚麼物理變化,全熵量即無序的總量絕不減少,這稱熱力學第二定律。最後熵達到最大而成平衡狀態,這就是所謂的熱寂,這時到處能量分佈相同,宇宙再也活不起來了。沒有運動,也就是沒有時間,宇宙就不存在了!   引力能的熵比核能以及熱運動能的熵小得多,通常引力場絕非無序的。但黑洞把通常共存物體吞噬進去,就使黑洞失去多樣性而驅於統一,於是就包含一定的熵,把黑洞引力場轉為其他形式就不能百分之百有用。但黑洞有熵是肯定的。若非如此,投入極大量的無序的東西到黑洞中,豈非全體熵減小了。這就和熱力學第二定律相違背了。而黑洞的引力能,可看為存於表面,恰如水滴表面張力那樣的表面能。如果給水滴補充能量,它就會激烈震動而分裂。因為面積不夠容納更大的能量。同樣的,如果對黑洞施以能量,類似的理由它會震動,用引力波放走能量,因為它不能分裂。它的表面積依然和初始界面表面積一樣,亦即表面積不能減少,這可稱為「不減能」。黑洞一形成,對應的表面積就是永遠不可滅。再來談到若黑洞自轉或帶電的話,其塌縮星的能量便對應增加。因為各個電場互相排斥,要合成一體必須作功。所以電荷凝縮伴隨著電場能量的儲存。以後吸收等量反符號電荷,變成中性,就等於把儲存的能量放出。事實上,塌縮星的全部能量包含了寄存的電量。而黑洞有不可滅表面能量、自轉能量、電場能量三種。自轉能和電場能不是以熵的形式寄存的。旋轉速度降低、電荷中性化,就可送出能量,所以只有表面能是熵性的。 但要如何獲得其能量呢?在這裡提供了「彈道法」。它是把物體射入能層,讓它分裂為二。一個跌進了事界,一個拋了出來,而跑出的便帶走了能層的能量。

六、不同形態的黑洞
        在黑洞學的領域裏,科學家認為黑洞在質量的分類只有兩種,一種是太陽的數百萬至數十億倍(supermassive type)另外一種是只有太陽的數倍(stellar type),可是現在美國太空總署及Carnegie Mellon 大學卻發現了另外一種型態的黑洞,其重量介於一百倍至一萬倍之間,這種新發現的黑洞可能普遍存在於螺旋星系裏,其太小卻比月亮還小,天文學家稱之為中量級(middleweight)黑洞。

        天文學家認為其星系中心有一個相當活躍的中量級黑洞,M82曾與M81擦身而過,造成M82內部的星球與星雲擾動,這種不尋常的碰撞可能是造成M82星系中心形成中量級黑洞的原因。

        新型態的黑洞是經由X-Ray射線的發現而確認,而X-Ray射線是黑洞附近的物質被吸入黑洞之前所散發出來的最後能量,經由X-Ray望遠鏡的偵測與光譜儀的對照,可以確定黑洞的大小及活躍程度。這種新型態的黑洞很可能是數個輕量級的黑洞聯合而成,這些輕量級的黑洞在M82星系裏有數以百萬計,因不明原因而合併成較大的中型黑洞。

七、雙黑洞系統
        當天空中某個天體正踏著醉拳般的步伐晃動時,天文學家就曉得在這醉拳 高手附近應該還有另一個天體正與之對峙。天體之間最重要的作用力 是萬有引力,它會使周遭天體的運動軌跡改變。例如,以前的天文學家是先 觀測到天王星(Neptune),但是卻發現天王星環繞太陽運轉的軌道與計算 不合,因而推斷天王星之外應該還有另一顆行星,之後,觀測者便在天王星軌道 之外又發現了海王星(Uranus)。此外,天文學家也利用這種方式來判斷 雙星系統。

        荷蘭Leiden天文台的Nico Roos觀測天龍座(Draco)的類星體(quasar)1928+738 所發出的噴射流(jet),他發現這條噴射流也有〝搖頭晃腦〞的現象,可能這種 進動(precession)是由類星體1928+738核心中的雙黑洞系統所造成的。 由噴射流搖頭晃腦的幅度和頻率,天文學家推算出這二個黑洞以週期2.9年 相互繞著運動,並且整個系統應該具有一億個太陽質量。

        以前就有人提出雙黑洞系統的構想,而類星體1928+738正好是這個構想 的最好證明。Roos並提出類星體1928+738內雙黑洞系統的形成原因,可能 是由二個中心都擁有黑洞的星系相互碰撞合併而成的。許多天文學家都相信 在類星體中或在活躍星系(active galaxy)中,星系合併的情形是常常發生。 Roos相信雙黑洞系統的相互快速運轉,會使得二個黑洞越轉越靠近,最後也會 合併成一個黑洞,因此這些雙黑洞系統應該都是些短命鬼。

八、白洞

(一)白洞導論:
        黑洞作為一個發展終極,必然引致另一個終極,就是白洞。其實膨脹的大爆發宇宙論中,早就碰到了原初火球的奇點問題,這個問題其實一直困擾著科學家們。這個奇點的最大質量與密度和黑洞的奇點是相似的,但他們的活動機制卻恰恰相反。高能量超密物質的發現,顯示黑洞存在的可能,自然也顯示白洞存在的可能。如果宇宙物質按不同的路徑和時間走到終極,那麼也可能按不同的時間和路徑從原始出發,亦即在大爆發之初的大白洞發生後,仍可能出現小爆發小白洞。而且,流入黑洞的物質命運究竟如何呢?是永遠累積在無窮小的奇點中,直到宇宙毀滅,還是在另一個宇宙湧出呢?如果黑洞從有到無,那白洞就應從無到有。60年代的蘇聯科學家開始提出白洞的概念,科學家做了很多工作,但這概念不像黑洞這麼通行,看來白洞似乎更虛幻了。問題是我們已經對引力場較為熟悉,從恆星、星系演化為黑洞有數理可循,但白洞靠什麼來觸發,目前卻依然茫然無緒。無論如何宇宙至少觸發過一次,所以白洞的研究顯然與宇宙起源的研究更有密切的關係,因而白洞學說通常與宇宙學及結合起來。人們努力的方向不在於黑白洞相對的哲學辯論,而在於它的物理機制問題。從現有狀態去推求終末,總容易些,相反的從現有狀態去探索原始,難免茫無頭緒。

(二)白洞起源:
        白洞學說出現已有一段時間,1970年捷爾明便提出它們存於類星體、劇烈活動的星系中的可能性。相對論和宇宙論學者早已明白此學說的可能性,只是這與一般正統的宇宙觀不同,較不易獲得承認。某些理論認為,由於宇宙物體的激烈運動,或者星系一部噴出的高能小物體,它們遵守著克卜勒軌道運動。這是一種高度理想化的推測,亦即一個地方有幾個白洞,在星系核心互相旋轉,偶然噴出滿天星斗。噴出的白洞演化成新星系。而從星系團的照片中可觀察到一系列的星系由物質連接起來。這顯示它們是由一連串劇烈噴射所形成的。照此來說,白洞可能會像阿米巴原蟲一樣分裂生殖,由分裂而形成星系。然而這又和目前的理論相違背。從此看來,就是星系生成也有不同見解。有的天文學家便提出並接受宇宙之初便有不均勻物質的結塊,而其中便包含了白洞。宇宙向最初奇點收縮,星系、星系群都同一動作,這當然和黑洞的奇點相似。宇宙的不同區域,其密度皆不同,收縮時首先在高密度的地方,達到了黑洞的臨界密度,從此消失在事界之後,宇宙不斷收縮,使不斷出現高密奇點。宇宙成為大量黑洞及周圍物質的集合體。然而事實上,宇宙是膨脹而非收縮的,因此它是白洞而不是黑洞。在宇宙整體性源始的大奇點中存在著密度高的小質點,它們隨著膨脹向四面八方擴散,大白洞大量爆發生出小白洞。星系等不均勻物體,正是由它生成的。不均勻物體之所以易和黑洞拉上關係,皆是因為它和膨脹現狀相對稱的宇宙中局部收縮的過程。目前宇宙中黑洞和白洞的存在是並行不悖的,是過程的兩個端點而已。黑洞奇點是物質末期塌縮的終點,白洞物質的奇點是星系的始端。只不過各過程不是時,而是先後交錯的。

(三)白洞的噴發:
        有關於白洞的資訊,目前並不多。所以我們對白洞的噴發並不十分了解。白洞的噴口的來歷並不清楚,一如大爆發原因不明。奈里卡在1975年論述了許多使天文學家感覺困擾的問題和白洞的數學連繫,這是相關重要的。在噴發中白洞存在的前提下。外部觀測者可以探測到藍移所致的不同輻射源的頻譜。大爆發的初期狀態所遵循的愛因斯坦宇宙論方程式同樣可施於探索星系規模膨脹系統的未爆核狀態,但奈理卡使用了方程式時結合了過程的物理項。白洞向外爆發的時間極短,這一瞬的過程當然很難說明,但白洞所產生的電磁輻射市可計算的。觀測到的爆炸光譜的最大特徵,是最初以高能輻射為主體,不久就顯示出低能輻射。輻射若是由白洞產生,這現像就很自然了輻射能愈高,藍移也愈大,所以最初可見光也都移到紫外區了。他還計算了銀河系中偶然的小規模爆發現象,說明了銀河內小白洞隨時爆發的可能性。例如短期間活動的銀河內X-ray,劇烈的最高能量最先到達,其後能量下降,整體按幕函數遞減在光譜中顯示出來。這和白洞理論計算是一致的。各X-ray之間,光譜不盡相同,不過這差異可從白洞對自己產生的電磁輻射產生畸變說明。因為白洞內產生的輻射可能有黑體輻射(微波以下噪音)、自由─自由輻射(帶電粒子間相互作用產生)、同步輻射(帶電粒子在強磁中通過而產生)等不同形態。人造衛星偶然觀測到的突發r射線,可以白洞影響說明;宇宙射線背景高能粒子的生成,也可以認定是白洞噴發的物體。
資料提供:林志信
資料來源: http://content.edu.tw/senior/earth/tp_ml/stu/103_7/favorite.htm

  


黑洞基百科,自由的百科全書
黑洞(英文:Black hole)是根據廣義相對論所預言、在宇宙空間中存在的一種質量相當大的天體和星體(非一個「洞」)。黑洞是由質量足夠大的恆星在核融合反應的燃料耗盡後,發生重力塌縮而形成。黑洞的質量是如此之大,它產生的重力場是如此之強,以致於任何物質和輻射都無法逃逸,就連傳播速度最快的光(電磁波)也逃逸不出來。由於類似熱力學上完全不反射光線的黑體,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點。

當星體發生超新星爆炸時,中子之間強烈的互相排斥力量無法抵擋外界推擠力量,將中子星擠壓成更高密度狀態,同時在沒有其他力量足以抵擋如此強大壓力的情況下,整個星球會不斷地縮小,最終形成「黑洞」。直至目前為止,質量最小的黑洞大約有3.8倍太陽質量。

黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前的因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。

黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今為止,黑洞的存在已被天文學界和物理學界的絕大多數研究者所認同,天文界並不時提出於宇宙中觀測發現到已存在的黑洞。

 

研究歷史
重力透鏡模擬的黑洞,可看出在星系背景扭曲的圖像歷史上,第一個意識到一個緻密天體密度可以大到連光都無法逃逸的人是英國地理學家約翰·米歇爾(英語:John_Michell)(John Michell)。他在1783年寫給亨利·卡文迪什一封信中提出這個想法的,他認為一個和太陽同等質量的天體,如果半徑只有3公里,那麼這個天體是不可見的,因為光無法逃離天體表面。 1796年,法國物理學家拉普拉斯曾預言:「一個質量如250個太陽,而直徑為地球的發光恆星,由於其重力的作用,將不允許任何光線離開它。由於這個原因,宇宙中最大的發光天體,卻不會被我們看見」。拉普拉斯依據牛頓萬有引力定律求得黑洞半徑。 拉普拉斯描述的這種天體,是表面的逃逸速度大於光速的天體。任何運動物體如果小於此速度,最多只能繞星體旋轉而不能到遠方去,如果表面逃逸速度大於光速,那麼光線就不能傳到遠方去,遠方得不到它的光線,它就成了完全黑暗的天體。儘管「黑洞」(black hole)一詞是在1968年由美國天體物理學家約翰·惠勒提出來,但拉普拉斯描述的正是黑洞這種天體。

1915年12月,在愛因斯坦發表廣義相對論1個月後,德國天文學家卡爾·史瓦西即得到愛因斯坦場方程式的精確解,能夠對於點質量與球形質量所產生的重力場給出描述,這包括史瓦西度規和史瓦西半徑等等概念,該精確解算出,如果某天體全部質量都壓縮到很小的「重力半徑」範圍之內,所有物質、能量(包括光線)都被囚禁在內,從外界看,這天體就是絕對黑暗的存在,也就是「黑洞」。

1934年,德國天文學家沃爾特·巴德和瑞士天文學家弗里茨·茲威基指出,當一個衰老的大質量恆星核無法再通過熱核反應產生能量時,它有可能會通過重力塌縮的過程塌縮為一個中子星或黑洞。1939年,美國物理學者歐本海默計算出,一顆質量超過太陽質量3倍( 歐本海默極限)而又沒有任何熱核反應的「冷恆星」,一定會在自身重力的作用下坍縮成為黑洞,也就是說該恆星已經成為死亡遺骸。1974年,英國天文學者霍金提出黑洞蒸發的概念,認為在黑洞周圍,在虛粒子產生的相對瞬間,會出現四種可能性:直接湮滅、雙雙落入黑洞、正粒子落入黑洞而負粒子逃脫、負粒子落入黑洞而正粒子逃脫,而且最後一種可能性最低。霍金據此進一步提出了微型黑洞(也稱為原初黑洞)的概念。

現代物理中的黑洞理論建立在廣義相對論的基礎上。由於黑洞中的光無法逃逸,所以我們無法直接觀測到黑洞。然而,可以通過測量它對周圍天體的作用和影響來間接觀測或推測到它的存在。[2][5]比如說,恆星在被吸入黑洞時會在黑洞周圍形成吸積氣盤,盤中氣體劇烈摩擦,強烈發熱,而發出X射線。藉由對這類X射線的觀測,可以間接發現黑洞並對之進行研究。

結構特性
形成恆星有生命周期,並通過不斷的核融合維持其能量以抵抗自身造成的重力,一顆恆星從氫元素開始其聚變歷程,逐步產生其他重元素並且恆星也會逐步膨脹,至於具體聚變到哪一種元素則取決於每個恆星本身,如太陽擁有90億年的氫融合和10億年的氦聚變,質量更大的恆星因具有足夠能量則可以向更高級的核融合發展產生更重的元素,但是即使大質量(相當於太陽質量8倍以上)的恆星,其極限聚變的重點也只能到達鐵元素(質子數26),因鐵並非核融合材料。恆星質量越大壽命越短,若一顆恆星較另一顆恆星質量大三倍,則壽命只有前者的約1/750。恆星演化到末期,由於無法進行更高級的核融合以抵抗重力便會發生嚴重的「塌縮」,塌縮的結果因其質量大小所造成的重力差距而有巨大差異,如太陽最終將成為白矮星,質量較太陽大30倍以上的恆星最終將成為「黑洞」

目前公認的理論認為,黑洞只有三個物理量可以測量到:質量、電荷、角動量。也就是說:對於一個黑洞,一旦這三個物理量確定下來了,這個黑洞的特性也就唯一地確定了,這稱為黑洞的無毛定理,或稱作黑洞的唯一性定理。另一方面,黑洞一旦形成,則在黑洞形成之前兩其他物理信息即告丟失,黑洞上不存在如立方體、椎體或其他有凸起的形態,這是黑洞無毛定理的另一種理解方法。

但是這個定理卻只是限制了古典理論,沒有否認可能有其他量子荷的存在,所以黑洞可以和大域單極或是宇宙弦共同存在,而帶有大域量子荷。黑洞具有潮汐力,越小的黑洞潮汐力越大,反之,越大的黑洞潮汐力越小,旋轉的黑洞有內視界和外視界,並會有一個奇異環,一切越過視界的東西最終都會落向奇異點,越大的黑洞從視界到奇異點所花的時間越長。

物理特性[編輯]質量和尺寸
質量達太陽10倍的黑洞之電腦模擬圖歐本海默極限指出,一顆質量超過太陽質量3倍而又沒有任何熱核反應的「冷恆星」,一定會在自身重力的作用下坍縮成為黑洞,也就是說該恆星已經成為死亡遺骸。[8]:209 更精確地說,當大質量天體演化末期,其塌縮核心的質量超過太陽質量的3.2倍時,由於沒有能夠對抗重力的斥力,核心坍塌將無限進行下去,從而形成「黑洞」。(核心小於1.4個太陽質量的,會變成白矮星;介於兩者之間的,形成中子星)。天文學的觀測表明,在絕大部分星系的中心,包括銀河系,都存在超大質量黑洞,它們的質量從數百萬個直到數百億個太陽。愛因斯坦的廣義相對論預測有黑洞解。其中最簡單的球對稱解為史瓦西度規。這是由卡爾·史瓦西於1915年發現的愛因斯坦方程式的解。

根據史瓦西解,如果一個重力天體的半徑小於一個特定值,天體將會發生坍塌,這個半徑就叫做史瓦西半徑。在這個半徑以下的天體,其中的時空嚴重彎曲,從而使其發射的所有射線,無論是來自什麼方向的,都將被吸引入這個天體的中心。因為相對論指出在任何慣性座標中,物質的速率都不可能超越真空中的光速,在史瓦西半徑以下的天體的任何物質,都將塌陷於中心部分。依據廣義相對論的推演,黑洞中存在擁有無窮大密度的「重力奇點」,被戲稱為「上帝憎惡的裸奇異點」。在在「史瓦西半徑」內,由於黑洞奇異點巨大的質量而形成的超強重力,以至於連光子都不能逃出黑洞,所以這就是黑洞的「黑」之所在。

史瓦西半徑由下面式子給出:

G是萬有引力常數,M是天體的質量,c是光速。對於一個與地球質量相等的天體,其史瓦西半徑僅有9毫米。

黑洞分類 分類 質量 大小
超重黑洞 ~105–1010 M太陽 ~0.001–400 AU
中介質量黑洞 ~103 M太陽 ~103 km ≈ R地球
恆星黑洞 ~10 M太陽 ~30 km
微型黑洞 up to ~M月球 up to ~0.1 mm

溫度
就輻射譜而言,黑洞與有溫度的物體完全一樣,而黑洞所對應的溫度,則正比於黑洞視界的重力強度。換句話說,黑洞的溫度取決於它的大小。
若黑洞只是太陽的幾倍重,它的溫度大約只比絕對零度高出億分之一度,而更大的黑洞溫度更低。因此這類黑洞所發出的量子輻射,一律會被大爆炸所留下的2.7K輻射(宇宙背景輻射)完全淹沒。

事件視界 未解決的物理學問題:物理資訊是否會在黑洞遺失? 

主條目:事件視界
事件視界又稱為黑洞的視界,事件視界以外的觀察者無法利用任何物理方法獲得事件視界以內的任何事件的資訊,或者受到事件視界以內事件的影響。事件視界是造成黑洞所以被稱為黑洞的根本原因,是黑洞的最外層邊界,在此邊界內連光都無法逃脫。 天文學家於2012年7月稱,觀測於距地球超過50億光年遠發現類星體編號3C 279,它體內包含了一個質量高達十億倍太陽質量的黑洞,成為首個「事件視界」被觀測存在的直接證據。

光子球是個零厚度的球狀邊界。在此邊界所在位置上,黑洞的重力所造成的重力加速度,剛好使得部份光子以圓形軌道圍著黑洞旋轉。對於非旋轉的黑洞來說,光子球大約是史瓦西半徑的一點五倍。這個軌道不是穩定的,隨時會因為黑洞的成長而變動。

黑洞外圍假想表面是包覆著的光子球層,如果光線與光子球層以切線方式擦身而過,那重力便能抓取光子將之沿著光子球層,永遠繞著黑洞旋轉,類似衛星繞地球旋轉一般。

其他的緻密星如中子星、夸克星等也可能會有光子球。

動圈主條目:動圈
 
動圈動圈(Ergosphere,又稱Frame Dragging或是Lense Thirring Effect,「蘭斯-蒂林效應圈」),轉動狀態的質量會對其周圍的時空產生拖拽的現象,這種現象被稱作參考系拖拽。「旋轉黑洞」才有參動圈,也就是黑洞南北極與赤道在時空效應上有所不同,這會產生一些奇妙的效應來讓我們有機會斷定其實實在在是一顆黑洞的特徵之一。

觀測者可以利用光圈效應及動圈,觀測進入或脫離黑洞的光子的運動,透過間接的手段,例如粒子含量的分佈及潘羅斯過程(「旋轉黑洞」的能量拉出過程),來間接了解其重力的分佈,透過重力的分佈重新建立出其動圈。這種觀測方式,只有雙星以上的系統才能夠進行這樣的觀測。

黑洞周圍由於重力強大的因素,理論預期會發生「時間場異常」現象,這包含了周圍的「參考系拖曳圈」及「事件視界」效應。 此外,由於時間物理學尚未發展,時間意義失效的區域,目前物理學還無能力進行探討。

黑洞的合併會發射強大的重力波,新的黑洞會因後座力脫離原本在星系核心的位置。如果速度足夠大,它甚至有可能脫離星系母體。

分類方法一:

1.超重黑洞: 到目前為止可以在所有已知星系中心發現其蹤跡。質量可以是太陽的數百萬至170億倍。迄今所知最大的黑洞在星系NGC 1277的中心,質量約為太陽的170億倍。
2.中介質量黑洞:是質量超過恆星黑洞(數十倍太陽質量),但遠小於超重黑洞(數百萬倍太陽質量)的一種黑洞。即超新星爆炸以後所留下的核心質量是太陽的3至15倍就會形成黑洞。理論預測,當質量為太陽的40倍以上,可不經超新星爆炸過程而形成黑洞。
3.恆星黑洞:大質量恆星(大約20倍太陽質量)重力坍塌後所形成的黑洞,可以藉由伽瑪射線暴或超新星來發現它的蹤跡。如果緻密星的質量超過臨介值時,重力坍塌會繼續,然後突變為重力坍塌,形成黑洞。雖然還沒證實到中子星的最大質量,但估計也有3倍太陽質量。直自目前為止,質量最小的黑洞大約有3.8倍太陽質量。
4.微型黑洞:又稱作量子黑洞或者迷你黑洞,是很小的黑洞。被稱作量子力學黑洞是因為在這個尺度之下,量子力學的效應扮演了非常重要的角色。微型黑洞的產生有可能是在大型強子對撞機內就可以觀測到的重要現象。

分類方法二:
根據黑洞本身的物理特性(質量、電荷、角動量)進行分類

1.不旋轉不帶電荷的黑洞。它的時空結構於1916年由史瓦西求出稱史瓦西黑洞。
2.不旋轉帶電黑洞,稱萊斯納-諾德斯特洛姆黑洞。時空結構於1916-1918年由萊斯納和諾德斯特洛姆求出。
3.旋轉不帶電黑洞,稱克爾黑洞。時空結構由克爾於1963年求出。
4.一般黑洞,稱克爾-紐曼黑洞。時空結構於1965年由紐曼求出。
原初黑洞[編輯]原初黑洞是理論預言的一類黑洞,目前尚無直接證據支持原初黑洞的存在。宇宙大爆炸初期,宇宙早期膨脹之前,某些區域密度非常大,以至於宇宙膨脹後這些區域的密度仍然大到可以形成黑洞,這類黑洞叫做原初黑洞。原初黑洞的質量與密度不均勻處的尺度有關,因此原初黑洞的質量可以小於恆星坍塌生成的黑洞,根據霍金的理論,黑洞質量越小,蒸發越快。質量非常小的原初黑洞可能已經蒸發或即將蒸發,而恆星坍塌形成的黑洞的蒸發時標一般長於宇宙時間。天文學家期待能觀測到某些原初黑洞最終蒸發時發出的高能伽瑪射線 [24]。

天文觀測
在銀河系中心星際雲被黑洞撕開的影像黑洞形成後,周遭的物質會不斷被吸入黑洞中而無法被觀測,更無法指出當黑洞單獨存在,但當雙星中的一方為黑洞時,來自另一方星球的氣團不斷流入黑洞,驟然激起的高溫,這時X射線閃光等會發亮,此時可以間接發現黑洞存在。 由於黑洞觀測有實際的困難度存在,宣稱某個星體是黑洞者,通常都只給出幾張模糊的照片或部分的數據,黑洞的所有特徵無法全面驗證,一般媒體報導實際僅有部分資訊,無法滿足專業天體物理的數據要求,因此天文資料庫當中,並沒有黑洞,僅有黑洞候選星。

人們為了尋找黑洞付出很多努力,成果卻不多,20世紀的70年代才找到4個黑洞候選者,在90年代之後又發現6對新的X射線雙星黑洞候選者,其中2個在大麥哲倫星系裡,8個在銀河系內,並於2000年後續續探測出7個,有人估計過去100億年中銀河系平均每100年有一顆超新星爆炸,而每100個中有1顆導致黑洞形成,那麼銀恆系應該有100萬個恆星級黑洞,可是至2007年也只有找到一共17個黑洞候選者。

以下是較為著名的黑洞候選者
1.銀河系中心人馬座A
2.天鵝座X-1
3.SN 1979C

資料來源: http://zh.wikipedia.org/zh-tw/%E9%BB%91%E6%B4%9E

 

 

arrow
arrow
    全站熱搜

    米達 發表在 痞客邦 留言(0) 人氣()